Supplementary Data: Details of Predictions located during post-analysis Table S3. Lattice parameter deviations, ΔE and RMSD for the experimental and predicted structures of molecule XVI. $\alpha = \beta = \gamma = 90^{\circ}$ in all structures. | | Rank | ΔE ^a (kJ/mol) | density
(g/cm ³) | a (Å) | b (Å) | c (Å) | RMSD ₁₅ ^b (Å) | |---------------------------|--------------|--------------------------|---------------------------------|----------|----------|-----------|-------------------------------------| | expt. (T = 174 K) | - | - | 1.385 | 9.645(2) | 7.381(1) | 16.185(3) | - | | not located in sea | rch, but ene | ergy minimis | sed in post-a | ınalysis | | | | | Hofmann | - | +1.51 | -2.5% | +2.5% | +0.6% | -0.6% | 0.115 | | Misquitta, Pickard, Needs | - | -0.05° | +5.6% | -0.4% | -3.9% | -1.1% | 0.145 | | Scheraga,
Arnautova | - | +2.59 | -5.9% | +1.6% | +3.9% | +0.6% | 0.224 | ^a ΔE is calculated with respect to the lowest energy structure predicted by the same research group. Table S4. Lattice parameter deviations, ΔE and RMSD₁₅ for the experimental and predicted structures of molecule XVII. $\alpha = \gamma = 90^{\circ}$ in all structures. | | Rank | ΔE^{a} (kJ/mol) | density (g/cm ³) | a (Å) | b (Å) | c (Å) | β (°) | RMSD ₁₅ b (Å) | |------------------------|-----------|-------------------------|------------------------------|----------------|----------|-----------|-----------|--------------------------| | expt. (T = 174 K) | - | - | 1.837 | 12.639(1) | 5.979(1) | 11.422(1) | 96.807(1) | - | | not located in | n search, | but energy | minimised | in post-analys | is | | | | | Hofmann | - | +2.75 | -1.8% | +0.9% | -0.6% | +1.8% | +2.8% | 0.229 | | Scheraga,
Arnautova | - | +5.34 | -2.6% | +2.1% | 0.0% | +0.2% | +0.6% | 0.193 | ^a ΔE is calculated with respect to the lowest energy structure predicted by the same research group. Table S5. Lattice parameter deviations, ΔE and RMSD for the experimental and predicted structures of molecule XVIII. $\alpha = \beta = \gamma = 90^{\circ}$ in all structures. | | Rank | ΔE ^a (kJ/mol) | density
(g/cm ³) | a (Å) | b (Å) | c (Å) | RMSD ₁₅ b (Å) | |--------------------|--------------|--------------------------|---------------------------------|----------|----------|-----------|--------------------------| | expt. (T = 174 K) | - | - | 1.566 | 9.889(1) | 8.887(1) | 24.969(3) | - | | not located in sea | rch, but ene | ergy minimis | sed in post-a | nalysis | | | | | Hofmann | - | +2.56 | -1.6% | +1.6% | +0.2% | +0.2% | 0.135 | | Price, Price | - | +5.03 | -2.9% | +0.7% | +1.9% | 0.0% | 0.100 | | Boerrigter | - | -0.58 ^c | +0.3% | +1.7% | +0.5% | -2.0% | 0.439 | ^b RMSD₁₅ is calculated using a 15 molecule comparison in the Materials Module of Mercury, ignoring H atoms. $^{^{\}rm c}$ ΔE for the global minimum is calculated with respect to the second lowest energy structure. ^b RMSD₁₅ is calculated using a 15 molecule comparison in the Materials Module of Mercury, ignoring H atoms. | Van Eijck | - +2 | 9.30 -1.7% | +0.8% | +2.4% | -0.3% | 0.188 | |-----------|------|------------|-------|-------|-------|-------| |-----------|------|------------|-------|-------|-------|-------| $^{^{\}rm a}$ ΔE is calculated with respect to the lowest energy structure predicted by the same research group. Table S6. Lattice parameter deviations, ΔE and RMSD for the experimental and predicted structures of molecular salt XIX. $\alpha = \beta = \gamma = 90^{\circ}$ in all structures. | | Rank | ΔE ^a (kJ/mol) | density
(g/cm ³) | a (Å) | b (Å) | c (Å) | RMSD ₁₅ ^b (Å) | |------------------------|--------------|--------------------------|---------------------------------|-----------|----------|-----------|-------------------------------------| | expt.
(T = 200 K) | - | - | 1.481 | 23.501(3) | 3.714(1) | 12.654(1) | - | | not located in sea | rch, but ene | ergy minimis | sed in post-a | nalysis | | | | | Hofmann | - | +12.43 | -7.3% | +6.0% | +0.3% | +0.7% | 0.301 | | Price, Mohamed | - | +10.21 | -3.2% | -2.2% | +2.0% | +3.7% | 0.265 | | Scheraga,
Arnautova | - | +0.32 | -1.4% | -2.4% | -1.2% | +5.1% | 0.542 | $^{^{}a}\Delta E$ is calculated with respect to the lowest energy structure predicted by the same research group. Table S7. Lattice parameter deviations, ΔE and RMSD₁₅ for the experimental and predicted structures of molecule XX. $\alpha = \gamma = 90^{\circ}$ in all structures. | | Rank | ΔE ^a (kJ/mol) | density (g/cm ³) | a (Å) | b (Å) | c (Å) | β (°) | RMSD ₁₅ b (Å) | | |--|------|--------------------------|------------------------------|-----------|----------|-----------|-----------|--------------------------|--| | expt. (T = 150 K) | - | - | 1.411 | 14.078(1) | 6.356(1) | 25.310(2) | 96.063(2) | - | | | not located in search, but energy minimised in post-analysis | | | | | | | | | | | Hofmann | - | +2.43 | +0.4% | +1.0% | -2.1% | +0.9% | +1.3% | 0.297 | | | Van Eijck | - | -11.40 ^c | -0.8% | +1.4% | -2.5% | +2.6% | +4.1% | 0.435 | | ^a ΔE is calculated with respect to the lowest energy structure predicted by the same research group. Table S8a. Lattice parameter deviations, ΔE and RMSD₁₅ for the experimental and predicted structures of hydrate XXI (with matching hydrogen placement). $\alpha = \gamma = 90^{\circ}$ in all structures. | | Rank | ΔE ^a (kJ/mol) | density
(g/cm ³) | a (Å) | b (Å) | c (Å) | β (°) | RMSD ₁₅ | | |--|------|--------------------------|---------------------------------|----------|----------|------------|------------|--------------------|--| | expt. $(T = 150 \text{ K})$ | - | - | 1.639 | 9.790(7) | 3.609(3) | 21.583(16) | 91.462(14) | - | | | not located in search, but energy minimised in post-analysis | | | | | | | | | | | Hofmann | - | +2.10 | +1.9% | +1.3% | -1.5% | +2.7% | +2.7% | 0.159 | | $^{^{}a}\Delta E$ is calculated with respect to the lowest energy structure predicted by the same research group. ^b RMSD₁₅ is calculated using a 15 molecule comparison in the Materials Module of Mercury, ignoring H atoms. $^{^{\}rm c}$ ΔE for the global minimum is calculated with respect to the second lowest energy structure. ^b RMSD₁₅ is calculated using a 15 molecule comparison in the Materials Module of Mercury, ignoring H atoms. ^b RMSD₁₅ is calculated using a 15 molecule comparison in the Materials Module of Mercury, ignoring H atoms. $^{^{\}rm c}$ ΔE for the global minimum is calculated with respect to the second lowest energy structure. ^b RMSD₁₅ is calculated using a 15 molecule comparison in the Materials Module of Mercury, ignoring H atoms. Figure S1. Overlay of the unit-cell contents of the observed crystal structure XVI (green) and Neumann \textit{et al.} XVI.1 (grey). RMSD $_{15}$ 0.157 $\hbox{\AA}$ Figure S2. Overlay of the unit-cell contents of the observed crystal structure XVII (green) and Price $\it et\,al.$ XVII.2 (grey). RMSD $_{15}$ 0.130 Å Figure S3. Overlay of the unit-cell contents of the observed crystal structure XVIII (green) and Neumann $\it et al. XVIII.1$ (grey). RMSD $\it 0.122 \, \mathring{A}$ Figure S4. Overlay of the unit-cell contents of the observed crystal structure XIX (green) and van Eijck XIX.2 (grey). RMSD 0.220~Å Figure S5. Overlay of the unit-cell contents of the observed crystal structure XX (green) and Day $\it et al. XX.1 (grey)$. RMSD 0.429 Å